|
- Matus, P.P. and Rychagov, G.P. (1997) Mathematical modelling in biology and medicine: Reference book, Belaruskaya navuka, Minsk, 207 p. (in Russian).
- Самарский А.А., Вабищевич П.Н., Матус П.П.(1998) Разностные схемы с операторными множителями, Минск: Изд-во ЗАО “ЦОТЖ”, 1998, 442 с. (in Russian).
- Samarskii A.A., Matus, P.P., and Vabishchevich, P.N., (2002) Difference schemes with operator factors, Kluwer Academic Publishers, Boston/Dordrecht/London, 384 p.
- S. Lemeshevsky, P. Matus, D. Poliakov Exact finite-difference schemes. De Gruyter. – 2016, 243 p.
|
-
P. P. Matus, B. D. Utebaev. Monotone difference schemes of higher accuracy for parabolic equations // Doklady of the National Academy of Sciences of Belarus, 2020, vol. 64, no. 4, pp. 391-398 (in Russian). https://doi.org/10.29235/1561-8323-2020-64-4-391-39
-
P. P. Matus, H.T.K. Anh. Compact difference schemes for Klein-Gordon equa-tion // Doklady of the National Academy of Sciences of Belarus, 2020, vol. 64, no. 5, pp. 526-533 (in Russian). https://doi.org/10.29235/1561-8323-2020-64-5-526-533
-
P. P. Matus, H.T.K. Anh. Compact difference schemes for Klein–Gordon equa-tion with variable coefficients // Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 25-32 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-1-25-3
-
P. P. Matus P.P. and Utebaev B.D. Compact and monotone difference schemes for parabolic equations.// Mathem. Mod., 33(4), 60-78 (2021) (in Russian)
-
Матус П.П., Х. Т. К. Ань. Компактные разностные схемы на трехточечном шаблоне для гиперболических уравнений второго порядка // Дифференц. уравнения. 2021, Т.57, №7, с.
|
- Matus, P.P. (2003) Stability of difference schemes for nonlinear time-dependent problems. Comput. Meth. Appl. Math., 3(2): 313-329.
- Matus, P. and Martsynkevich, G. (2005) On the stability of a monotone difference scheme for the Burgers equation. Differents. Uravneniya, 41(7): 955-960. (in Russian); transl. in Differential Equations, 41(7): 1003-1009.
- Matus, P., Koroleva, O., Chuiko, M. (2007) Stability of difference schemes for equations of weakly compressible liquid. Comput. Meth. Appl. Math., 7(3): 208-220.
- Matus, P. and Kolodynska, A.(2008) Nonlinear stability of the difference schemes for equations of isentropic gas dynamics. Comput. Meth. Appl. Math., 8(2): 155-170.
- Matus, P.P. and Chuiko, M.M. (2009) Investigation of the stability and convergence of difference schemes for a polytropic gas with subsonic flows Differ. Equ. 45, No. 7, 1074-1085 (in English); translation from Differ. Uravn. 45, No. 7, 1053-1064 (2009).
- Matus P., and Lemeshevsky S.V. (2009) Stability and monotonicity of difference schemes for nonlinear scalar conservation laws and multidimensional quasi-linear parabolic equations Comput. Method Appl. Math. 9(3): 253 - 280.
- Marcinkiewicz, G.L., Matus, P.P., and Chuiko, M.M. (2010) Stability of difference schemes in terms of Riemann invariants for a polytropic gas Zh. Vychisl. Mat. Mat. Fiz. 50, No. 6, 1078-1091 (in Russian); translation in Comput. Math., Math. Phys. 50, No. 6, 1024 5 1037 (2010).
- Matus, P.P. (2010) Stability with respect to the initial data and monotonicity of an implicit difference scheme for a homogeneous porous medium equation with a quadratic nonlinearity Differ. Equ. 46, No. 7, 1019-1029 (in English); translation from Differ. Uravn. 46, No. 7, 1011-1021 (2010).
- Matus P., Polyakov D. (2012) Stability and convergence of the difference schemes for equations of isentropic gas dynamics in Lagrangian coordinates. Publ. Inst. Math. 91 (105):137-153.
- Jovanovic B., Lapinska-Chrzczonowicz M., Matus A., Matus P. (2012) Stability of finite-difference schemes for IBVP for multidimensional parabolic equations with a nonlinear source of the power type. Comp. Meth. Appl. Math. 12(3):289-305.
- P.P. Matus, I.N. Panayotova, D.B. Polyakov (2012) Stability and Monotonicity of a Conservative Difference Scheme for a Multidimensional Nonlinear Scalar Conservation Law. Differential Equations. 48(7):982–989.
- Matus, P.P. (2013) On the role of conservation laws in the problem of occurrence of unstable solutions for quasi-linear parabolic equations and their approximations Differ. Equ. 49, No. 7 (in English); translation from Differ. Uravn. 49, No. 7 (2013).
|
- S. Lemeshevsky, P. Matus, D. Poliakov Exact finite-difference schemes. De Gruyter. – 2016, 243 p.
- Matus, P.P., Irkhin, U. and Lapinska-Chrzczonowicz, M. (2005) Exact difference schemes for time-dependent problems. Comput. Meth. Appl. Math., 5(4): 422-448.
- Matus, P.P., Irkhin, U., Lapinska-Chrzczonowicz, M. and Lemeshevsky S.V.(2006) About exact difference schemes for hyperbolic and parabolic equations. Differ. Uravn. 43(7): 978-986 (In Russian).
- Kruk, A., Matus, P.(2007) High accuracy difference schemes for nonlinear transfer equation. Exact difference schemes for time-dependent problems. Math. Model. Anal. 12(4): 469-482.
- Matus, P., Kolodynska, A. (2007) Exact difference schemes for hyperbolic equations. Comput. Meth. Appl. Math., 7(4): 341-364.
- Laspinska-Chrzczonowicz, M., Matus, P.(2008) Exact difference schemes for hyperbolic equations. Int. J. Numer. Anal. Mod. 5(2): 303-319.
- Matus P.P., Kirshtein A.A., Irknin V.A. (2011) Exact difference schemes for the system of acoustic equations and analysis of Riemann problem. J. Numer. Appl. Math. 2(105):83-97.
- Lapinska-Chrzczonowicz, M., Matus, P. (2013). Exact difference schemes and schemes of higher order of approximation for convection-diffusion equation. I. Annales UMCS, Informatica. 3(1):37-51.
- Matus, P., Poliakov, D. (2013).Exact finite difference schemes for three-dimensional advection-reaction equations. Journal of Coupled Systems and Multiscale Dynamics. 1(4):428-433
- Lapinska-Chrzczonowicz, M., Matus, P. (2014).Exact difference schemes for a two-dimensional convection–diffusion–reaction equation.Computers & Mathematics with Applications. Computers & Mathematics with Applications. 67(12):2205–2217.
- Matus P., Poliakov D. Exact L1-conservative finite-difference scheme for the Neumann problem for heat conduction equation. // Applied mathematics, infor-matics and mechanics. – 2016. – Vol. 21. – No. 1. – P.33 – 43.
- Matus P., Poliakov D. Exact L1-conservative finite-difference scheme for the Neumann problem for quasilinear parabolic equation. // Recent Developments in Mathematics and Informatics, Contemporary Mathematics and Computer Sci-ence. –Vol. 1. – Ed. A. Zapała, Wydawnictwo KUL. – Lublin. – 2016. – Ch. 12. –P. 155 –166
|
- Samarskii, A.A., Vabishchevich, P.N., and Matus, P.P. (1997) The strong stability of differential-operator and operator-difference schemes. Dokl. Ross. Akad. Nauk, 356(4): 455-457. (in Russian); transl. in Dokl. Math., 56(2): 726-728.
- Matus, P.P. and Panaiotova, I.N. (1999) Strong stability of operator-differential equations and operator-difference schemes. Differents. Uravneniya, 35(2): 256-265. (in Russian); transl. in Differential Equations, 35(2): 257-268.
- Matus, P.P. and Jovanovich, B.S. (1999) Coefficient stability of operator-difference schemes. Mathematical Modeling and Analysis (MMA), 4: 135-146.
- Samarskii, A.A., Gulin A.V., and Matus P.P. (2000) Sufficient conditions of the coefficient stability of operator-difference schemes. Dokl. Ross. Akad. Nauk, 373(3): 304 - 306.
- Jovanovich, B.S. and Matus, P.P. (2001) Strong stability of operator-differential equations and operator-difference schemes in norms integral with respect to time. Differents. Uravneniya, 37(7): 950-958. (in Russian); transl. in Differential Equations, 37(7): 998-1008.
- Matus P.P. and Panaiotova, I.N. (2001) Coefficient stability of three-layer operator-difference schemes. Zh. Vychisl. Mat. Mat. Fiz. 41(5): 722-731.
- Samarskii A.A., Matus, P.P., and Vabishchevich, P.N., (2002) Difference schemes with operator factors, Kluwer Academic Publishers, Boston/Dordrecht/London, 384 p.
- Matus, P.P. (2002) The maximum principle and some of its applications. Comp. Meth. Appl. Math., 2(1): 50-91.
- Jovanovich, B.S. and Matus, P.P. (2002) Coefficient stability of differential-operator equations of the second order.. Differents. Uravneniya, 38(10): 1371-1377.
- Bojovich, D.R., Jovanovich, B.S. and Matus, P.P. (2004) On the strong stability of first-order operator-differential equations. Differents. Uravneniya, 40(5): 655-661. (in Russian); transl. in Differential Equations, 40(5): 703-710.
- Lemeshevskii, S.V., Matus, P.P. and Naumovich, A.R. (2004) A criterion for coefficient stability. Differents. Uravneniya, 40(7): 978-984. (in Russian); transl. in Differential Equations, 40(7): 1043-1050.
- Jovanovich, B., Lemeshevsky, B., Matus, P. and Vabishchevich, P.N. (2006) Stability of solutions of differential-operator and operator-difference equations in the sense of perturbation of operators. Comp. Meth. Appl. Math., 6(3): 269-290.
- Jovanovich, B., Matus, P. (2007) Strong stability of operator-difference equations. Int. J. Appl. Math. and Statistics, 10(507): 978-984;
- P. P.Matus, S.V. Lemeshevsky Coefficient stability of the solution of the finite-difference scheme approximating the initial boundary value problem for semi-linear parabolic equation. // Differential Equations, 2018, Vol 54, No. 7, pp. 929–937.
- Matus P. P., Lemeshevsky S. V. Stability with respect to coefficients of solutions of difference schemes approximating initial boundary-value problems for semi-linear hyperbolic equations // Doklady of the National Academy of Sciences of Belarus, 2020, vol. 64, no. 2, pp. 135–143 (in Russian). https://doi. org/10.29235/1561-8323-2020-64-2-135-14
- P. P.Matus, S.V. Lemeshevsky Stability of Solutions of Second-Order Differen-tial-Operator Equations and of Their Difference Approximations. // Differential Equations, 2020, Vol 56, No. 7, pp. 923–934
|
- Koldoba, A.V., Poveshchenko, J.A., Matus, P.P., and Chuiko, M.M. (1992) Mathematical modeling of liquid flow in ramified hydraulic systems. Mathematical Modeling, 4(9): 43-54. (in Russian).
|
- Ananich, S.E, Matus, P.P., and Mozolevski, I.E. (1997) Difference schemes for Bolzmann-Fokker-Planck equation. Mathematical Modeling, 9(1): 99-115. (in Russian).
- Komarov, F.F., Mozolevski, I.E., Matus, P.P., and Ananich, S.E. (1997) Distribution of implanted impurities and deposited energy in high-energy ion implantation. Journal of Technical Physics, 67(1): 61-67.
- Komarov,F.F., Mozolevski, I.E., Matus, P.P., and Ananich, S.E. (1997) Distribution of implanted impurities and deposited energy in high-energy ion implantation. Nucl. Instr. and Meth. B 97 (124): 478-483.
|
- Matus, P.P. and Rychagov, G.P. (1997) Mathematical modelling in biology and medicine: Reference book, Belaruskaya navuka, Minsk, 207 p.. (in Russian).
|
- Melnik, R.V.N., Wang, L., Matus, P. and Rybak, I. (2003) Computational aspects of conservative difference schemes for shape memory alloys applications, Lecture Notes in Computer Science, 2668, 791-800.
- Matus, P., Melnik, R.V.N., Wang, L., and Rybak, I. (2004) Nonlinear thermoelasticity: modelling matherials with shape memory Mathematics and Computers in Simulation, 65, 489-509.
|
- Matus P. P., Tuyen Vo Thi Kim, Gaspar F. Monotone difference schemes for lin-ear parabolic equations with mixed boundary conditions // Doklady of the Na-tional academy of science of Belarus. – 2014. – V. 58, No. 5, P. 18–22.
- F.J. Gaspar, F.J. Lisbona, P. Matus, V.T.K. Tuyen Numerical methods for a one-dimensional non-linear Biot’s model // Journal of Computational and Ap-plied Mathematics. –2016. – V. 293, February 2016, P. 62 –72
- F.J. Gaspar, F.J. Lisbona, P. Matus, V.T.K. Tuyen Monotone finite difference schemes for quasilinear parabolic problems with mixed boundary conditions // Comp. Meth. Appl. Math. –2016. – Vol. 16. – No. 2. –P. 231-243.
|
- Ananich, C.E, Matus, P.P. and Mozolevski, I.E. (1997) Difference schemes for Bolzmann-Fokker-Planck equation.. Mathematical Modeling, 9(1): 99-115.
- Samarskii, A.A., Matus, P.P., and Rychagov, V.G. (1997) Monotone difference schemes of high order on nonuniform grids. Mathematical Modeling, 9(2): 95-96. (in Russian).
- Samarskii, A.A., Vabishchevich, P.N., and Matus, P.P. (1997) Stability of vector additive schemes. Dokl. Ross. Akad. Nauk, 361(6): 746-748. (in Russian); transl. in Dokl. Math., 58(1): 133-135.
- Matus, A.P. and Matus, P.P. (2001) The maximum principle and its application for the investigation of stability and convergence of difference schemes. Mathematical Modeling and Analysis (MMA), 6(2): 289-299.
- Matus, P.P. (2002) The maximum principle and some of its applications. Comp. Meth. Appl. Math., 2(1): 50-91.
- Matus, P.P. and Rybak, I.V. Monotone difference schemes for nonlinear parabolic equations Differents. Uravneniya, 39(7): 960-968. (in Russian); transl. in Differential Equations, 39(7): 1013-1022.
- Matus, P. and Martsynkevich, G. (2004) Monotone and economical difference schemes on non-uniform grids for multidimensional parabolic equations with boundary conditions of the third kind. Comp. Meth. Appl. Math, 4(3): 350-367
- Matus, P. and Rybak, I. (2004) Difference schemes for elliptic equations with mixed derivatives. Comp. Meth. Appl. Math, 4(4): 494-505
- P.P. Matus, I.N. Panayotova, D.B. Polyakov (2012) Stability and Monotonicity of a Conservative Difference Scheme for a Multidimensional Nonlinear Scalar Conservation Law. Differential Equations. 48(7):982–989.
- Матус П.П., Утебаев Б.Д. Монотонные схемы произвольного порядка точности для уравнения переноса // Ж. вычисл. матем. и матем. физ. 2021.Т.61. №
- Matus P.P., Pylak D., Hieu L.M. Monotone Finite-Difference Schemes of Sec-ond-Order Accuracy for Quasilinear Parabolic Equations with Mixed Deriva-tives // Differential Equations, 2019, Vol 55, No. 3, pp. 424-436
- P. Matus, F.J. Gaspar, L.M. Hieu, V.T.K. Tuyen Monotone difference schemes for weakly coupled elliptic and parabolic systems // Comp. Meth. Appl. Math. –2017. – Vol. 17. – No. 2. – P. 287 – 298
- Ф.Ж. Гаспар, П.П. Матус, В.Т.К. Туен, Л.М. Хиеу Монотонные разност-ные схемы для систем эллиптических и параболических уравнений// Докла-ды НАН Беларуси. – 2016. – Т. 60, № 5. – С. 29–33
- F.J. Gaspar, F.J. Lisbona, P. Matus, V.T.K. Tuyen Monotone finite difference schemes for quasilinear parabolic problems with mixed boundary conditions // Comp. Meth. Appl. Math. –2016. – Vol. 16. – No. 2. –P. 231-243
|
- Vabishchevich, P.N., Matus, P.P., and Shcheglik, V.S. (1994) Operator-difference equations of divergent type. Differents. Uravneniya, 30(7): 1175-1186. (in Russian); transl. in Differential Equations, 30(7): 1088-1100.
- Samarskii, A.A., Matus, P.P., and Vabishchevich, P.N. (1998) Stability and convergence of two-level difference schemes in integral with respect to time norms. M3AS: Mathematical Models and Methods in Applied Sciences, 8(6): 1055-1070.
- Samarskii, A.A., Vabishchevich, P.N., and Matus, P.P. (1998) Stability of vector additive schemes. Dokl. Ross. Akad. Nauk, 361(6): 746-748. (in Russian); transl. in Dokl. Math., 58(1): 133-135.
- Korzyuk, V.I., Lemeshevsky, S.V., and Matus, P.P. (1999) Conjugation problem about jointly separate flow of viscoelastic and viscous fluids in the plane duct. Math. Model. and Analys. (MMA), 4: 114-123.
- Mazhukin, V.I., Matus, P.P., and Mikhailyuk, I.A. (2000) Finite-difference schemes for the Korteweg-de Vries equation. Differents. Uravneniya, 36(5): 709-716. (in Russian); transl. in Differential Equations, 36(5): 789-797.
- Jovanovich, B.S. and Matus, P.P. (2001) Strong stability of operator-differential equations and operator-difference schemes in norms integral with respect to time. Differents. Uravneniya, 37(7): 950-958. (in Russian); transl. in Differential Equations, 37(7): 998-1008.
- Matus, P.P. and Zjuzina, E.L. (2001) Three-level difference schemes on non-uniform in time grids. Comput. Meth. Appl. Math., 1(3): 265-284.
- Samarskii A.A., Matus, P.P., and Vabishchevich, P.N., (2002) Difference schemes with operator factors, Kluwer Academic Publishers, Boston/Dordrecht/London, 384 p.
- Jovanovich, B., Lemeshevsky, B., and Matus, P. (2002) On the stability of differential-operator equations and operator-difference schemes Comp. Meth. Appl. Math., 2(2): 153-170.
- Jovanovich, B.S. and Matus, P.P. (2003) Asymptotic Stability of First- and Second-Order Operator-Differential Equations Differents. Uravneniya, 39(3): 383-392. (in Russian); transl. in Differential Equations, 39(3): 414-425.
- Bojovich, D.R., Jovanovich, B.S. and Matus, P.P. (2004) On the strong stability of first-order operator-differential equations. Differents. Uravneniya, 40(5): 655-661. (in Russian); transl. in Differential Equations, 40(5): 703-710.
- Lemeshevskii, S.V., Matus, P.P. and Naumovich, A.R. (2004) A criterion for coefficient stability. Differents. Uravneniya, 40(7): 978-984. (in Russian); transl. in Differential Equations, 40(7): 1043-1050.
- Jovanovich, B., Lemeshevsky, B., Matus, P. and Vabishchevich, P.N. (2006) Stability of solutions of differential-operator and operator-difference equations in the sense of perturbation of operators. Comp. Meth. Appl. Math., 6(3): 269-290.
- Jovanovich, B. and Matus, P. (2007) Strong stability of operator-difference equations Int. J. Appl. Math. and Statistics., 10(507): 50-69.
- П. П. Матус, Ле Минь Хиеу, Д. Пылак, Разностные схемы для квазили-нейных параболических уравнений со смешанными производными // Докла-ды НАН Беларуси, 2019. Т. 63, № 3, c. 263-269
|
- Abrashin, V.N. and Matus, P.P. (1978) Difference methods for nonlinear hyperbolic equations with piecewise-smooth solutions. Differents. Uravneniya, 14(12): 2223-2240. (in Russian); transl. in Differential Equations, 14(12): 1576-1589.
- Abrashin, V.N. and Matus, P.P. (1979) Difference methods for nonlinear hyperbolic equations with piecewise-smooth solutions. II. Differents. Uravneniya, 15(7): 1225-1239. (in Russian); transl. in Differential Equations, 15(7): 870-881.
- Matus, P.P. (1980) On convergence of difference schemes for one-dimensional gasdynamics. PhD thesis, Minsk: 124 p.. (in Russian).
- Abrashin, V.N. and Matus, P.P. (1981) Accuracy of finite-difference schemes for one-dimensional gasdynamics. Differents. Uravneniya, 17(7): 1155-1170. (in Russian); transl. in Differential Equations, 17(7): 731-744.
- Matus, P.P. and Shavel', A.N. (1984) Convergence of finite-difference schemes for one-dimensional gasdynamics problems with thermal conductivity. Differents. Uravneniya, 19(7): 1251-1261. (in Russian); transl. in Differential Equations, 19(7): 932-941.
- Matus, P.P. (1985) Unconditional convergence of some finite-difference schemes for gasdynamics problems. Differents. Uravneniya, 21(7): 1227-1238. (in Russian); transl. in Differential Equations, 21(7): 839-848.
- Matus, P.P. and Stanishevskaya, L.I. (1991) Uncondotional convergence of difference schemes for nonstationary quasilinear equations of mathematical physics. Differents. Uravneniya, 27(7): 1203-1219. (in Russian); transl. in Differential Equations, 27(11): 847-859.
- Vabishchevich, P.N., Matus, P.P., and Rychagov, V.G. (1995) A class of difference schemes on dynamic locally concentrating grids. Differents. Uravneniya, 31(5): 849-857. (in Russian); transl. in Differential Equations, 31(5): 787-796.
- Matus, P.P., Moskal'kov, M.N., and Tscheglik, V.S. (1995) Consistent estimates of the convergence rate for the grid method in the case of a second-order nonlinear equation with generalized solutions. Differents. Uravneniya, 31(7): 1219-1226. (in Russian); transl. in Differential Equations, 31(7): 1198-1207.
- Jovanovich, B.S., Matus, P.P., and Tscheglik, V.S. (1999) On accuracy of difference schemes for nonlinear parabolic equations with generalized solutions. Zh. Vychisl. Mat. Mat. Fiz., 39(10): 1679-1686. (in Russian); transl. in Comp. Math. Math. Phys., 39(10): 1611-1618.
- Jovanovich, B.S., Matus, P.P., and Tscheglik, V.S. (2000) The estimates of accuracy of difference schemes for the nonlinear heat equation with weak solutions. Mathematical Modeling and Analysis (MMA), 5: 86-96.
- Matus P. (2014) On convergence of difference schemes for IBVP for quasilinear parabolic equations with generalized solutions. Comp. Meth. Appl. Math. 14(3):361 - 371.
- P. Matus, D. Poliakov, L. M. Hieu, On convergence of difference schemes for Dirichlet IBVP for two-dimensional quasilinear parabolic equations with mixed derivatives and generalized solutions // Comput. Methods in Appl. Math. 20 (2020), № 4.
- Piotr Matus, Dmitriy Poliakov, Dorota Pylak, On convergence of difference schemes for Dirichlet IBVP for two-dimensional quasilinear parabolic equa-tions, International Journal of Environment and Pollution, 2019, Vol 66, pp. 63-79.
- Piotr Matus, Dmitriy Poliakov, Le Minh Hieu On the consistent two-side esti-mates for the solutions of quasilinear convection-diffusion equations and their approximations on non-uniform grids // Journal of Computational and Applied Mathematics, 2018, Vol. 340, pp. 571-581
- Matus, P. P., Poliakov, D. B. Consistent two-sided estimates for the solutions of quasilinear parabolic equations and their approximations. // Differential Equa-tions, 2017, Vol 53, No. 7, pp. 964-973.
|
- Samarskii, A.A., Mazhukin, V.I., and Matus, P.P. (1997) $L_2$-conservative schemes for the Korteweg-de Vries equation. Dokl. Ross. Akad. Nauk, 357(4): 458-461. (in Russian); transl. in Dokl. Math., 56(3): 909-912.
- Mazhukin, V.I., Matus, P.P., and Mikhailyuk, I.A. (2000) Finite-difference schemes for the Korteweg-de Vries equation. Differents. Uravneniya, 36(5): 709-716. (in Russian); transl. in Differential Equations, 36(5): 789-797.
- Samarskii A.A., Matus, P.P., and Vabishchevich, P.N., (2002) Difference schemes with operator factors, Kluwer Academic Publishers, Boston/Dordrecht/London, 384 p.
|
- Vabishchevich, P.N., Lemeshevskij, S.V., and Matus, P.P. (1998) Difference schemes for the problem of fusing hyperbolic and parabolic equations. Sib. Mat. Zh., 39(4): 854-962. (in Russian); transl. in Sib. Math. J., 39(4): 825-834.
- Samarskii, A.A., Korzyuk, V.I., Lemeshevskij, S.V., and Matus, P.P. (1998) Difference schemes for the conjugation problem of a hyperbolic and a parabolic equation on moving grids. Dokl. Ross. Akad. Nauk, 361(3): 321-324. (in Russian); transl. in Dokl. Math., 58(1): 74-77.
- Korzyuk, V.I., Lemeshevsky, S.V., and Matus, P.P. (1999) Conjugation problem about jointly separate flow of viscoelastic and viscous fluids in the plane duct. Math. Model. and Analys. (MMA), 4: 114-123.
- Samarskii, A.A., Korzyuk, V.I., Lemeshevsky, S.V., and Matus, P.P. (2000) Finite-difference methods for problem of conjugation of hyperbolic and parabolic equations. M3AS: Mathematical Models and Methods in Applied Sciences, 10(3): 361-378.
|
- Matus, P. (2002) Monotone schemes of a higher order of accuracy for differential problems with boundary conditions of the second and third kind. Comp. Meth. Appl. Math, 2(4): 378-391.
- Matus, P. and Martsynkevich, G. (2004) Monotone and economical difference schemes on non-uniform grids for multidimensional parabolic equations with boundary conditions of the third kind. Comp. Meth. Appl. Math, 4(3): 350-367.
- Matus P. P., Tuyen Vo Thi Kim, Gaspar F. Monotone difference schemes for lin-ear parabolic equations with mixed boundary conditions // Doklady of the Na-tional academy of science of Belarus. – 2014. – V. 58, No. 5, P. 18–22
- F.J. Gaspar, F.J. Lisbona, P. Matus, V.T.K. Tuyen Numerical methods for a one-dimensional non-linear Biot’s model // Journal of Computational and Ap-plied Mathematics. –2016. – V. 293, February 2016, P. 62 –72
- F.J. Gaspar, F.J. Lisbona, P. Matus, V.T.K. Tuyen Monotone finite difference schemes for quasilinear parabolic problems with mixed boundary conditions // Comp. Meth. Appl. Math. –2016. – Vol. 16. – No. 2. –P. 231-243.
|
- Jovanovich, B., Lemeshevsky, B., and Matus, P. (2002) On the stability of differential-operator equations and operator-difference schemes Comp. Meth. Appl. Math., 2(2): 153-170.
- Jovanovich, B.S. and Matus, P.P. (2003) Asymptotic Stability of First- and Second-Order Operator-Differential Equations Differents. Uravneniya, 39(3): 383-392. (in Russian); transl. in Differential Equations, 39(3): 414-425.
|
- Matus P., and Lemeshevsky S.V. (2009) Stability and monotonicity of difference schemes for nonlinear scalar conservation laws and multidimensional quasi-linear parabolic equations Comput. Method Appl. Math. 9(3): 253 - 280.
- Matus, P.P. (2010) Stability with respect to the initial data and monotonicity of an implicit difference scheme for a homogeneous porous medium equation with a quadratic nonlinearity Differ. Equ. 46, No. 7, 1019-1029 (in English); translation from Differ. Uravn. 46, No. 7, 1011-1021 (2010).
- Matus, P.P. (2010) Well-posedness of difference schemes for semilinear parabolic equations with weak solutions Zh. Vychisl. Mat. Mat. Fiz.50, No. 12, 2155-2175 (in Russian); translation in Comput. Math. Math. Phys. 50, No. 12, 2044-2063 (2010).
- Matus, P.P., Lemeshevsky, S., and Kandratsiuk, A. (2010) Well-posedness and blow up for IBVP for semilinear parabolic equations and numerical methods Comput. Meth. Appl. Math. 10(4): 395-420.
- Matus, P.P. (2013) On the role of conservation laws in the problem of occurrence of unstable solutions for quasi-linear parabolic equations and their approximations Differ. Equ. 49, No. 7 (in English); translation from Differ. Uravn. 49, No. 7 (2013).
- P. P. Matus, N. G. Churbanova, and D. A. Shchadinskii On the Role of Conser-vation Laws and Input Data in the Generation of Peaking Modes in Quasilinear Multidimensional Parabolic Equations with Nonlinear Source and in Their Ap-proximations // Differential Equations. – 2016. – Vol. 52. – No. 7. –P. 942 –950
- Matus P.P., Kozera R., Paradzinska A., and Schadinsky D.A. Discrete analogs of the comparison theorem and two-side estimates of solution of parabolic equa-tions // Applied Mathematics & Information Sciences. – 2016. –V. 10, No. 1, P. 83-92.
|
- Matus, P.P. (1990) A class of difference schemes on composite meshes for nonstationary problems of mathematical physics. Differents. Uravneniya, 26(7): 1241-1254. (in Russian); transl. in Differential Equations, 26(7): 911-922.
- Matus, P.P. (1991) Construction of difference schemes for multidimensional parabolic equations. Differents. Uravneniya, 27(11): 1961-1971. (in Russian); transl. in Differential Equations, 27(11): 1404-1414.
- Matus, P.P. (1993) Conservative finite-difference scheme in subdomains for parabolic and hyperbolic second-order equations. Differents. Uravneniya, 29(4): 700-711. (in Russian); transl. in Differential Equations, 29(4): 595-605.
- Matus, P.P. (1993) Conservative difference schemes for quasilinear parabolic equations in subdomains. Differents. Uravneniya, 29(7): 1222-1231. (in Russian); transl. in Differential Equations, 29(7): 1060-1069.
- Matus, P.P. and Mikhailuk, I.A. (1993) Difference schemes with variable weights for evolutionary equations of second order. Mathematical Modeling, 5(12): 35-60. (in Russian).
- Matus, P.P. (1994) Difference schemes on composite grids for hyperbolic equations. Zh. Vychisl. Mat. Mat. Fiz. 34(6): 870-885; transl. in Comput. Math. Math. Phys., 34(6): 749-761.
- Vabishchevich, P.N., Matus, P.P., and Rychagov, V.G. (1995) A class of difference schemes on dynamic locally concentrating grids. Differents. Uravneniya, 31(5): 849-857. (in Russian); transl. in Differential Equations, 31(5): 787-796.
- Samarskii, A.A., Vabishchevich, P.N., and Matus, P.P. (1996) Finite-difference approximations of higher accuracy order on nonuniform grids. Differents. Uravneniya, 32(2): 265-274. (in Russian); transl. in Differential Equations, 32(2): 269-281.
- Samarskii, A.A., Mazhukin, V.I., Matus, P.P., and Chuiko, M.M. (1996) Invariant finite-difference schemes for equations of mathematical physics in nonstationary coordinate systems. Differents. Uravneniya, 32(12): 1691-1701. (in Russian); transl. in Differential Equations, 32(12): 1685-1695.
- Samarskii, A.A., Matus, P.P., and Rychagov, V.G. (1997) Monotone difference schemes of high order on nonuniform grids. Mathematical Modeling, 9(2): 95-96. (in Russian).
- Samarskii, A.A., Mazhukin, V.I., and Matus, P.P. (1997) Invariant difference schemes for differential equations with the transformation of independent variables. Dokl. Ross. Akad. Nauk, 352(5): 602-605; transl. in Dokl. Math., 55(1): 140-143.
- Samarskii, A.A., Jovanovich, B.S., Matus, P.P., and Shcheglik, V.S. (1997) Finite-difference schemes on adaptive time grids for parabolic equations with generalized solutions. Differents. Uravneniya, 33(7): 975-984. (in Russian); transl. in Differential Equations, 33(7): 981-991.
- Samarskii, A.A., Vabishchevich, P.N., and Matus, P.P. (1998) Second-order accurate finite-difference schemes on nonuniform grids. Zh. Vychisl. Mat. Mat. Fiz., 38(3): 413-424. (in Russian); transl. in Comput. Math. Math. Phys., 38(3): 399-410.
- Vabishchevich, P.N., Lemeshevskij, S.V., and Matus, P.P. (1998) Difference schemes for the problem of fusing hyperbolic and parabolic equations. Sib. Mat. Zh., 39(4): 854-962. (in Russian); transl. in Sib. Math. J., 39(4): 825-834.
- Samarskii, A.A., Mazhukin, V.I., and Matus, P.P. (1998) Finite-difference scheme on nonuniform grids for a two-dimensional parabolic equation. Differents. Uravneniya, 34(7): 980-987. (in Russian); transl. in Differ. Equations, 34(7): 982-990.
- Jovanovich, B.S. and Matus, P.P. (1999) Estimation of the convergence rate of difference schemes for elliptic problems. Zh. Vychisl. Mat. Mat. Fiz., 39(1): 61-69. (in Russian); transl. in Comp. Math. Math. Phys., 39(1): 56-64.
- Samarskii, A.A., Mazhukin, V.I., Malafei, D.A., and Matus, P.P. (1999) Accuracy enhancement in difference schemes on spatially nonuniform grids. Dokl. Ross. Akad. Nauk, 367(3): 310-313. (in Russian); transl. in Dokl. Math. 60(1): 61-64.
- Zyl, A.N. and Matus, P.P. (1999) Efficient high-order accurate finite-difference schemes for multidimensional parabolic equations on nonuniform grids. Zh. Vychisl. Mat. Mat. Fiz., 39(7): 1151-1157. (in Russian); transl. in Comp. Math. Math. Phys., 39(7): 1109-1115.
- Samarskii, A.A., Vabishchevich, P.N., Zyl, A.N., and Matus, P.P. (1999) Difference scheme of second order accuracy for Dirichlet problem in a general domain. Math. Modeling, 11(9): 71-82. (in Russian).
- Matus, P.P. and Zyl, A.N. (2000) Difference schemes of high order accuracy for mathematical physics problems in arbitrary areas. Mathematical Modeling and Analysis (MMA), 5: 133-142.
- Matus, A.P. and Matus, P.P. (2001) The maximum principle and its application for the investigation of stability and convergence of difference schemes. Mathematical Modeling and Analysis (MMA), 6(2): 289-299.
- Matus, P.P. and Zjuzina, E.L. (2001) Three-level difference schemes on non-uniform in time grids. Comput. Meth. Appl. Math., 1(3): 265-284.
- Samarskii A.A., Matus, P.P., and Vabishchevich, P.N., (2002) Difference schemes with operator factors, Kluwer Academic Publishers, Boston/Dordrecht/London, 384 p.
- Matus, P.P. (2002) The maximum principle and some of its applications. Comput. Meth. Appl. Math., 2(1): 50-91.
- Matus, P. and Martsynkevich, G. (2004) Monotone and economical difference schemes on non-uniform grids for multidimensional parabolic equations with boundary conditions of the third kind. Comp. Meth. Appl. Math, 4(3): 350-367
- P.P. Matus, Le Minh Hieu Difference Schemes on Nonuniform Grids for the Two-Dimensional Convection–Diffusion Equation // Computational Mathemat-ics and Mathematical Physics, 2017, Vol. 57, No. 12, pp. 1994–2004.
- П.П. Матус, Л.М. Хиеу Монотонные разностные схемы на неравномер-ных сетках для двумерного квазилинейного уравнения конвекции-диффузии // Доклады НАН Беларуси. – 2017. – Т. 61, № 4. – С. 7–13
- Piotr Matus, Le Minh Hieu, Lubin G. Vulkov Analysis of second order differ-ence schemes on non-uniform grids for quasilinear parabolic equations // Jour-nal of Computational and Applied Mathematics. –2017– Vol. 310. – P.186 –199
|
|